In [ ]:
import sys
sys.path.append('..')
%pylab inline
import pylab as pl
import numpy as np
# Some nice default configuration for plots
pl.rcParams['figure.figsize'] = 10, 7.5
pl.rcParams['axes.grid'] = True
pl.gray()
In [ ]:
from IPython.parallel import Client
client = Client()
In [ ]:
len(client)
In [ ]:
%px print("Hello from the cluster engines!")
In [ ]:
def where_am_i():
import os
import socket
return "In process with pid {0} on host: '{1}'".format(
os.getpid(), socket.gethostname())
In [ ]:
where_am_i()
In [ ]:
direct_view = client.direct_view()
In [ ]:
where_am_i_direct_results = direct_view.apply(where_am_i)
where_am_i_results
In [ ]:
where_am_i_direct_results.get()
In [ ]:
where_am_i_direct_results.get_dict()
In [ ]:
lb_view = client.load_balanced_view()
In [ ]:
where_am_i_lb_result = lb_view.apply(where_am_i)
where_am_i_lb_result
In [ ]:
where_am_i_lb_result.get()
In [ ]:
import sys; sys.path.append('..')
In [ ]:
from tutolib import mmap, model_selection
_ = reload(mmap), reload(model_selection)
In [ ]:
from sklearn.datasets import load_digits
from sklearn.preprocessing import MinMaxScaler
digits = load_digits()
X = MinMaxScaler().fit_transform(digits.data)
y = digits.target
digits_cv_split_filenames = mmap.persist_cv_splits('digits_10', X, y, 10)
digits_cv_split_filenames
In [ ]:
mmap.warm_mmap_on_cv_splits(client, digits_cv_split_filenames)
In [ ]:
from sklearn.svm import LinearSVC
from collections import OrderedDict
import numpy as np
linear_svc_params = OrderedDict((
('C', np.logspace(-2, 2, 5)),
))
linear_svc = LinearSVC()
In [ ]:
linear_svc_search = model_selection.RandomizedGridSeach(lb_view)
linear_svc_search.launch_for_splits(linear_svc, linear_svc_params, digits_cv_split_filenames)
In [ ]:
linear_svc_search
In [ ]:
linear_svc_search.boxplot_parameters()
In [ ]:
x = np.linspace(0, int(1e3), 100)
pl.plot(x, x ** 3 / 1e9)
pl.xlabel("Number of training samples")
pl.ylabel("Estimated Convergence Time of SMO (in seconds)")
In [ ]:
1e6 ** 3 / 1e9 / 60 / 60 / 24 / 365
In [ ]:
from sklearn.kernel_approximation import Nystroem
from sklearn.pipeline import Pipeline
nystroem_pipeline = Pipeline([
('nystroem', Nystroem()),
('clf', LinearSVC()),
])
In [ ]:
nystroem_pipeline_params = OrderedDict((
('nystroem__n_components', [50, 100, 200]),
('nystroem__gamma', np.logspace(-2, 2, 5)),
('clf__C', np.logspace(-2, 2, 5)),
))
In [ ]:
nystroem_search = model_selection.RandomizedGridSeach(lb_view)
nystroem_search.launch_for_splits(nystroem_pipeline, nystroem_pipeline_params, digits_cv_split_filenames)
In [ ]:
nystroem_search
In [ ]:
nystroem_search.boxplot_parameters()
In [ ]:
client.abort()
In this example we used LinearSVC that does not provide a partial_fit method hence require to put the Nystroem expansion of complet dataset in memory. Furthermore the Pipeline object does not optimize the memory usage.
To make this example really scalable we would need to:
partial_fit to sklearn.pipeline.Pipelinepartial_fit method with small minibatches in the inner model evaluation function.